

Building Construction, materials and design towards energy efficient HVAC systems

- Mukesh Suthar

Effects of climate change

Sea level will rise 1-4 feet by 2100

WOMERSHIEL

Climate change could lead to a loss of 4 percent of European GDP by 2030

many in house y to get to be to hole, the anti-sized tele leighted terringer

Dorone type he experiments on horizon

the state of the s 10.000 and as the surface and its furnish

France remoded its factorie May on record And the second s Phone are also indications

that shanger is use of the startid's staged accuse coatments. Nor-Restoration, wanted in Suprethe Adaptitic Monthlemal later, alde Belgins aler en gener fature all ser-Not Respond to Service. three of \$10 and \$200 at 10 all \$10 at

other others and part of the primety, including

information and the percentered retrains load in the country with the transf these expanses in first present momenty in frequency and manually of a factor

He has bee being to be helded

the part harden for complete of the part o

NATIOLO JADALI UN NALLI JUNIAJ NAL DANLLI U

Deadly heatwaves could hit India: Climate change report

'1.5°C Temp Rise **KEY FINDINGS** May Happen As 2°C RISE IN GLOBAL TEMP WILL MEAN Early As 2030' > Deadlier heatwaves in India, Pakistan Manka.Behl@timesgroup.com

Rise in vector-borne Nagpur: India could face an diseases like malaria annual threat of deadly heatand dengue waves, like the one in 2015 that Many megacities killed at least 2,500 people, if becoming heat-stressed. the world gets warmer by 2 exposing more than 350 degrees Celsius over pre-inmillion more people to dustrial levels, says the deadly heat by 2050 much-anticipated world's

biggest review report on cli-Increase in poverty mate change. The report is to be released by the Intergothe Katowice climate change vernmental Panel on Climate conference in Poland this December, where governments

Change (IPCC) on Monday. TOI had a sneak preview will review the Paris Agreeof the report to be released internationally on Monday morning. The implications of

Study: Global warming to cause erratic monsoon rain in India

About 5% Increase In Rainfall For Every Degree Celsius Of Warming

Rokibuz Zaman TNN

Guwahati: If global warming continues unchecked. summer monsoon rainfall in India will become stronger and more erratic, revealed a research that predicts more extremely wet years in the future with potentially grave consequences for more than one billion people's well-being, economy, food systems and agriculture.

The study shows an incre ase in mean summer monsoon rainfall contributing to precipitation, especially in the Himalaya region - Arunachal Pradesh, Meghalava, Nagaland, Manipur, Mizoram, Tripura, and hill regions of Assam. Precipitation is water released from clouds in the form of rain, freezing rain, sleet, snow or hail.

Monsoon rains will likely is increasing monsoon rainincrease by about 5% for evefall in India even more than ry degrees Celsius of warpreviously thought. It is doming, found the study publisminating monsoon dynahed in the journal "Earth Symics in the 21st century." stem Dynamics" by a team of German researchers that ved that more rainfall is not compared more than 30 statenecessarily a good thing for of-the-art climate models the farming sector in India from all around the world. and its neighboring countri-

"We have found robust es. Co-author Julia Pongratz evidence for an exponential from LMU explains: "Crops dependence: For every degneed water, especially in the ree Celsius of warming. initial growing period, but monsoon rainfall will likely too much rainfall during increase by about 5%," says other growing states can lead author Ania Katzenberharm plants, including rice, ger from the Potsdam Instion which the majority of Intute for Climate Impact Resedia's population is depen-

The study shows an increase in mean summer monsoon rainfall contributing to precipitation, especially in 6 northeast states

nich, Germany (LMU),

"Hereby, we were also able to

confirm previous studies

but find that global warming

The researchers obser-

imilian University in Mumakes the Indian economy and food system highly sensitive to volatile monsoon patterns." A look into the past underlines that human behaviour is behind the intensification of rainfall, according to the researchers.

Starting in the 1950s, human-made forcings have begun to overtake slow natural changes occurring over many millennia, they said. At first, high sun-light blocking aerosol loadings led to subdued warming and thus a decline in rainfall, but since then, from 1980 onwards, greenhouse gas-induced warming has become the deciding driver for stronger and ieeling and Kalimpong in more erratic monsoon sea-West Bengal) stretching sons, they noted.

unpredictable weather extremes and their serious consequences," comments gro up leader and co-author Anders Levermann from PIK and Columbia University New York/USA on the findings of the study published in the journal Earth System Dynamics. "Because what is really on the line is the socio economic well-being of the Indian subcontinent, A more chaotic monsoon season po ses a threat to the agricultu reand economy in the region and should be a wakeup call for policy makers to drastically cut greenhouse gas arch (PIK) and Ludwig-Max- ding for sustenance. This

emissions worldwide." The researchers used 32 CMIP6 models to analyze the Indian summer monsoon's response to climate change and the majority of models project that the increase will contribute to the precipita tion, especially in the Hima lava region, the northeast of the Bay of Bengal and to the west coast of India. The Indi an Himalayan region is spre ad across 12 states (Jammu & Kashmir, Uttarakhand, Hi machal Pradesh, Arunachal Pradesh, Manipur, Meghala ya, Mizoram, Nagaland, Sik kim, Tripura, two districts of Assam namely Dima Hasao and Karbi Anglong and Dar

that climate change is about

across a length of 2,500 km and width of 250 to 300 km. "We see more and more

GAINS OF LIMITING WARMING TO 1.5°C > Several hundred million people will escape climate risks and be less susceptible to poverty by 2050 > Reduced losses in yields of maize, rice, wheat and other cereal crops in many countries THE HEAT IS ON 1.5°C global Temp rise (°C) in last 150 yrs temperature rise Delhi

INCOME A DESCRIPTION OF AN ADDRESS OF ADDRES

The Mark Management Property of the State of It has replaced many self-past up it of

in a star balance on. Density and discuss. In the other,

NAME OF TAXABLE ADDRESS

the same of the set of

and specifies for earlies in other institute, the space

within \$1.2 shuffled

likely between 2030 and 2052 (at current rate) Mumbai Even a 0.5° Kolkata increase in global warming can adversely Chennai affect human health

2030, "Global warming is lik key player in the global event. Ringing the alarm bells on ely to reach 1.5 degree Celsius runaway rise in temperatu-(above pre-industrial levels) res, the Special Report on Globetween 2030 and 2052 if it continues to increase at the same rate," the report said.

0.7

1.2

0.6

►Kolkata threat, P 10

r continued efforts to bridge ty remaining loopholes and ldress weak links in the do-setic banking and housing gulatory framework. This, adding to an unwaver-

This, adding to an unware-ing endewor to battle corrup-tion in the financial sector, will surely beef up the overall finan-cial robustness, analysts have chaimed, anguing against West-ern media overhyping risks with the country's banking ays-tern. In a fresh injection of con-fidence, the country's banking and insurance watchdog vowed and Thurindeen commons merica

issue surrounding default-sortgage record

guidance to help address mortgage default risks By GT staff reporter Coincidentally, Central Chin lenan Province, a major agr itural production provinc a blazed the trail of th ntry's village banking pur been in the news late troubles at several local y e banks and multiple loca solution and property projects, cording to market observ-rs, flag the need for a toughe ce on regulation over rura ks and presale homes. adequate oversight of vi bank operations and de sank operations and de-ers' presale funds have pinpointed as central to olated incidents that also dy occur in other provinc-perts claimed. They called ntinued efforts to bridge

Chops in Shanghai's Yuyuan Garden put to use misty spray heat prevention devices since July 14, 2022. Shanghai has issued its sighest alert for extreme heat for the third time this summer as swelkering temperatures repeatedly tested records this week.

Scorching weather to continue in August, 900 million affected so far

China braces for prolonged heatwayes in summer

By GT staff reporters	more than a month and tem-	been taking measures includ-	The heatwave in 2022 has	ing mortgage repayments. Describing the incidents as representing only a fraction
Hot air has blanketed many parts of China inchading Shanghai, Southwest China's Sichtan Province and East China's lingus and Zhejang provinces, affecting more than goo million people and over half of the national territory as of this week, with many cities in the grip of a heatwave for	C, according to the meioro- logical authority. The prolonged heatwaves have threatened crops and peo- ple's lives and pushed China's power usage to record-breaking levels. Despite the challenges, key industries in China have not experienced power cuts and the Chinose government has	ing unawing up to peak power install more cooling machines. However, meteorologists warred that climate change will lead to global hearwaves that are longer, more extreme, more frequent and that affect more people, and thus will become a new sizemal even if we achieve global climate targets.	term retainers for June have hit the highest since (87). Sum Shao, a senior researcher at the National Climate Center atfli- ated with the China Meteoro- logical Administration, told Meteoro- meteoro- Meteoro	and total morgage loans, the analysts based their sobriety on compelling estimates and numbers that portray a safe and sound financial landscape at large. Although Henan didn't make a list of the initial six provinces 2 including South-
The second second second second				

The Paris agreement set out a common global goal

The Paris Agreement set the global objective of limiting global temperature rise to

no more than 2°C

above pre-industrial levels and to pursue efforts to limit global temperature increase to

1.5°C

above pre-industrial levels.

LIMITING AMBIENT TEMPERATURE

Source: EGR, 2019

Sources Additional information: Global Carbon Project; Expert(s) (Friedlingstein et al.); 2010 and 2020 al.) © Statista 2021

WMO Provisional Statement on the State of the Global Climate in 2019

METEOROLOGICAL ORGANIZATION

FEATHER CUMATE

"WHO" – On Hospital Bed Requirements in India

World Health Organization	Health Topics ~	Countries ~	Newsroom	⊷ Emerge	encies v	Data ∽	About WHO ~
GHO Home	Indicators	Countries	Data API 🗸	Map Gallery	Publica	tions	Data Search
500				O (III)			
Visualisa	tions Da	ita Metadat	a Rela	ted indicators			
Hospital beds FILTERS Last updated: 2020-0 Location	(per 10 000 popul	ation) Hospital beds	(per 10 000 population	on)			
India							
2017		5.3		R			

530 Beds per million of people which is only **15%** of world average i.e. **3960.**

In India hospitals contribute **23%** of total energy consumption and the hospital building growth rate **12–15% in last decade.** The World Health Organization estimated that India need 80,000 additional hospital beds every year to meet the demands of India's population.

Source: WHO website & 10th International Conference on Energy

by Prime Minister Narendra Modi

1. Reach non-fossil energy capacity to 500GW by 2030

2. Fulfil 50% energy requirements via RE by 2030

3. Reduce 1 bn carbon emissions by 2030

4. Reduce carbon intensity >45% by 2030

5. Achieve the target of Net-Zero by 2070

Embodied Carbon

The emissions from manufacturing, transportation, and installation of building materials.

Operational Carbon

The emissions from a building's energy consumption.

Embodied Carbon

Operational Carbon

CARBON INVOLVED IN BUILDINGS

Energy Consumption in Hospitals (23 Participating Hospital)

- Bhopal
- Pune
- Mumbai
- Navi Mumbai
- Kolkata,
- Ludhiana

Source: A Report on Energy Efficient Hospitals – visiting the realities by CII & schneider

Building Life Cycle Cost Analysis (LCCA):

Design

Construction

Operation and Maintenance

APPROCH TO ENERGY EFFICIENT BUILDING DESIGN

Best Practices for Energy Efficient Building Systems

Envelope and Passive Systems:

- Optimizing massing and orientation using building energy simulation
- Decreasing envelope heat gain through appropriate construction assemblies, passive construction, insulation, phase change materials, shading, and reflective 'cool' surfaces
- Optimizing fenestration and window-to-wall ratios
- Maximizing daylight autonomy without glare

Mass and form

|--|--|--|

Energy Intensity

Mass and form

Reduce Insolation

Which is the best orientation?

North – South ? East – West ?

Sun-path Analysis **OBJECT ATTRIBUTES** Volue Ftange: 0.0 - 1.0 (e) IECOTECT v5

Shading

- Self-shading
- Horizontal/ Vertical overhangs
- Motorised louvers / venetian blinds

Shading Analysis

At 09:00 Hrs

Study of shadows and orientation at different times on 21st June.

At 11:00 Hrs

At 15:00 Hrs

At 17:00 Hrs

Optimize Window – Wall Ratio

- Around 40% is ideal
- Introduce spandrels
- Punched windows
- Fritting

Glazing

- High performance glazing
- Trade-off between light and heat ingress
- Electro-chromic glass dynamically changes properties

Wall

- low conductivity blocks
- Hollow blocks, flyash blocks, AAC blocks
- Cavity walls

Fired Clay Bricks

Concrete Blocks

Hollow Concrete Blocks

AAC blocks

Wall

Insulation

Insulation materials - XPS, EPS, Rock wool etc

Challenges for Energy Efficient Wall Assembly

Achieving U-value or Thermal Transmittance value as per standards

- c. 200mm Fly ash Brick
- d. 200mm AAC Block
- e. 200mm Concrete Block with EPS balls
- f. 150mm Fly ash Brick with 50mm Extruded Polystyrene (XPS)
- g. 150mm AAC Block with 50mm Extruded Polystyrene (XPS)

*All wall assemblies have 25mm external plaster and 12mm internal plaster

Roof

Insulation

- over-deck / under-deck
- Insulation materials XPS, EPS, PUF etc.

Roof

Terrace Garden

Roof

Terrace Garden – mitigates Heat Island effect

Roof

- High reflective coating– mitigates Heat Island effect
- Select roof coating /materials with high SRI value (SRI > 80)

Building Envelope – Shading Design – Case Study

Key points:

- East and West facades are not shaded by surrounding forms in critical period
- Need to provide shading on East and West facades during critical months and times of the day (March to June)
- North façade is exposed to summer sun. However, it is shaded by adjacent building and existing horizontal shading devices of 750mm are sufficient.
- South façade is shaded in critical times in summer,

Facade Design options considered

Vertical Shading Panel 1.50mx3.00 m

Option 1 – 35% opening 65% shading

Vertical Shading Panel 1.50mx3.00 m

Option 3 -37% opening

Vertical Shading Panel 1.50mx3.00 m

Option 2 – 57% opening 43% shading

Vertical Shading Panel 1.50mx3.00 m

Option 4 -50% opening

Shortlisted Shade Design for East & West

- Design of West façade to achieve shading in critical period of March to June
- Material with low conductivity to avoid heat absorption and thermal bridging
 65% shading achieved to

maintain view factor

West Facade

Improvement in building envelope performance

Net Heat Gain Reduced by 42% w.r.t. Base Case

Energy Simulation

- Design assistance tool & not only a design validation tool
- Assists Architects to quantify benefits of passive design strategies
- Compare performance of different building materials
- Evaluate various Energy Conservation Measures (ECMs)
- Submission to various Green Building Rating systems.
- Softwares: EQUEST, VisDOE, Energy Plus, IES etc.

Climate Analysis (Sun-path)

Case Study

Climate Analysis (Sun-path)

Case Study

JUNE - SUMMER SOLSTICE

Climate Analysis (Shadow)

Case Study

JUNE – SUMMER SOLSTICE

Climate Analysis (Solar Insolation)

Case Study

3000-

ENERGY PERFORMANCE SIMULATION

NATIONAL CANCER INSTITUTE, NAGPUR

GLAZING CONSIDERED

BUILDING AREA DETAILS: Gross floor area : 6,45,228 Sq.ft Conditioned area : 347,896 Sq.ft Unconditioned area : 297,332 Sq.ft

- Floor level:

1 basement, Mezzanine, G+ 6 floors

- Year: 2015

ENERGY SIMULATION (COMPARISON OF PROPOSED & BASELINE PARAMETERS)

BUILDING ELEMENT	PROPOSED CASE DESIGN INPUT	BASELINE DESIGN INPUT
	ENVELOPE	
Exterior Wall Construction	 150mm AAC wall with U-value or 0.193 Btu/hr.ft².[°]F 150mm AAC wall with air-gap and spandrel glazing with U-value of 0.120 Btu/hr.ft².[°]F (*Material assembly attached) 	f Steel Frame Construction R-13 Insulation. U-factor = 0.124 Btu/hr.ft ^{2 0} F
Roof Construction	150mm RCC Roof with 50mm Brick bat coba and 50mm overdeck insulation with an U-value of 0.08 Btu/hr.ft ² .°F (*Material assembly attached)	t Insulation entirely over deck U-factor = 0.063 Btu/hr.ft ^{2.0} F.
Floor / Slab Construction	6 inch slab, U = 0.350 Btu/hr.ft ^{2,0} F	Steel Joist construction U-factor = 0.350 Btu/hr.ft ^{2.0} F
Window-to-gross wall ratio	38 %	38%
Skylight to roof ratio	5.9%	5%
Fenestration Model/ Color	Saint Gobain-Reflectasol	ASHRAE 90.1- 2010
Fenestration U-factor	0.9 <u>Btu/hr.ft^{2,0}F</u> (As per ASHRAE 90.1-2010)	1.22 Btu/hr.ft ^{2.0} F
Fenestration SHGC -all	0.28	0.25
Fenestration Visible Light Transmittance	18%	NA
Skylight	U-value : 1.98 Btu/hr.ft ^{2.0} F; SHGC:0.19	U-value : 1.98 Btu/hr.ft ^{2.0} F; SHGC:0.19
Skylight	U-value : 1.98 Btu/hr.ft ^{2.0} F; SHGC:0.19	U-value : 1.98 Btu/hr.ft ^{2.0} F; SHGC:0.19
Shading Devices	Building self shade considered	None

Electrical Systems & Proces	s Loads	Ι
Interior Lighting Power Density	Building Area Method 1. Hospital space : 0.9 W/sq.ft	Building area method – Table 9.5.1 ASHRAE 90.1-2010 as follows: 1. Hospital : 1.21 W/sq.ft
Exterior Lighting Power	Total Power of 20 kW (As per DBR) would be supplied through Solar	Total Power = 20 kW (As per DBR)
Receptacle Equipment Power Density	Different values for different areas. Electrical load sheet attached	Different values for different areas. Electrical load sheet attached
Mechanical & Plumbing Sys	tems	
Primary HVAC System Type	 Variable Air Volume System Evaporative cooling for laundry and kitchen using the outside air. Cold water from heat pump of 2*35 TR capacities is directly sent to the secondary pump for building cooling. 	As per Table G3.1.1.A, Non-Residential building & more than 5 floors >1,50,000 sq.ft. Baseline HVAC system type, we are considering system under the heading electric and others, which is system 8, VAV- with PFP Boxes.
Fan Power	Variable speed fan with 0.0008 bhp/cfm	Fan power 0.0015 bhp/cfm
Chiller Parameters	2*400 & 2*200 TR Water cooled Screw Chiller with 5.5 COP	2*400 TR & 2*500 TR water cooled centrifugal chiller with 6.1 COP
Cooling Tower	Variable speed fan	Two-speed fan
Secondary Pump	Variable speed	Variable speed
Heat Recovery Wheel	Considered with 75% effectiveness	None
Hot water	Water has been pre-heated through Solar heater before it passes to the heat pump of COP 4.0 which runs on condensate heat recovery.	Electric Heating

ENERGY SIMULATION (COMPARISON OF PROPOSED & BASELINE PARAMETERS)

	TABLE 1: BASELINE PERFORMANCE – PERFORMANCE RATING METHOD COMPLIANCE									
Particulars	Energy Type	Annual Energy & Peak Demand	0° rotation	90° rotation	180° rotation	270° rotation	Average Baseline	AS IS Case		
Interior Lighting	Electricity	Energy Use (kWh)	4368568	4368568	4368568	4368568	4368568	3304057		
Equipment	Electricity	Energy Use (kWh)	9196800	9196800	9196800	9196800	9196800	9196800		
Heating	Electricity	Energy Use (kWh)	117	94	82	113	102	22		
Cooling	Electricity	Energy Use (kWh)	3530107	3572957	3524378	3576440	3550971	3099102		
Tower	Electricity	Energy Use (kWh)	1381179	1387351	1377791	1388451	1383693	907451		
Pumps	Electricity	Energy Use (kWh)	135925	137132	1357 <mark>1</mark> 7	137287	136515	91758		
Fans	Electricity	Energy Use (kWh)	1689417	1703798	1684464	1709611	1696823	799099		
Hot water	Electricity	Energy Use (kWh)	176003	176003	176003	176003	176003	17993		
Exterior Lighting	Electricity	Energy Use (kWh)	118625	118625	118625	118625	118625	0		
Exterior Equip.	Electricity	Energy Use (kWh)	438880	438880	438880	438880	438880	438880		
Total	Electricity	Energy Use (kWh)	21035621	21100213	21021309	21110779	21066981	17855162		
Total Energy Cost	Total Energy Cost Amount (Rs / Annum)		168284968	168801704	168170472	168886232	168535844	142841296		

With the AS IS case parameters, the project achieves 15.2% energy cost savings against ASHRAE base line building and thus achieves 5 points for Minimum Energy Performance EPI improved from **261 to 220 kW/Sq feet/Annum**

- Not possible to incorporate all features in a project
- Constraints : Budget, Space etc.
- Follow Energy standards: ASHRAE 90.1/ECBC
- Approach
 - Prescriptive
 - Whole Building Simulation

3

EPI & Benchmarking Approaches

EPI (Energy Performance Index) :

- kWh/Sq m/Annum or kWh/bed/Annum w.r.t. the climatic conditions & type of hospital

• Internal Benchmarking : Where energy performance of a building is compared against its own previous performance over a period.

• External Benchmarking : Involves comparison of energy performance of similar buildings against an established standard or baseline.

Building Life Cycle Assessment

Building Life Cycle Assessment

structure + façade \cong 372 kg CO₂e/m² (A1-A3)

structure + façade + TI + MEP estimate \cong 560 - 620 kgCO₂e/m²(A1-A5)

Source: Thinkstep report 2017

\$

Embodied Carbon (Low Carbon Materials Selection)

- Optimize ready-mix concrete design
- Recycled steel from low carbon plants
- Choose low-embodied-carbon finish materials
- Low embodied-carbon insulation

Building Material (Green Pro, EPD, Star Rating Program)

ACC Results

LCIA result for 1000 kg average cement						
LCIA Impact Category	Unit	Module A1- A3				
Abiotic Depletion (ADP elements)	kg Sb-Eq.	7.38E-04				
Abiotic Depletion (ADP Fossil)	MJ	3.94E+03				
Acidification Potential (AP)	kg SO ₂ -Eq.	2.15E+00				
Eutrophication Potential (EP)	kg Phosphate-Eq.	2.90E-01				
Global Warming Potential (GWP)	kg CO2-Eq.	6.88E+02				
Ozone Layer Depletion Potential (ODP)	kg CFC11-Eq.	6.02E-10				
Photochemical Ozone Creation Potential (POCP)	kg Ethene-Eq.	1.30E-01				

Supplementary indicators for 1000 kg average cement

Parameters	Unit	Module A1-A3
Non-hazardous waste	kg	1.30E-01
Hazardous waste	kg	2.62E-03
Radioactive waste	kg	0.00E00

ACC Limited

Confederation of Indian Industry

List of GreenPro Ecolabelled Product Manufacturers -January 2021

S No	Manufacturer	Category	Contact	Email	Phone
1	AB Ceramic Services	Tiles	G.Arivazhagan	abc@abceramic.in	904757323
2	ACC Limited	Ready Mix Concrete	Pralhad Mujumdar	pralhad.mujumdar@acclimited.com	998757883
3	ACC Limited	Cement	Ashish Prasad	ashish.prasad@acclimited.com	983399997
4	Aeropure	IAQ Solution	Avinash	dradk@hotmail.com	982202292
5	AET Building Products (WI) Pvt. Ltd	Tiles	Nusrat Rasiwala	clarence.pereira@flexiblespace.in	976577859
6	Akzo Nobel	Paints & Coatings	Varun Chhabra	varun.chhabra@akzonobel.com	996298526
7	Anutone Acoustics Limited	Insulation Products	Gopinath	qa@anutone.com	988652378
8	Aquatron International AB	Waste Water Treatment System	Raita Mocherla	Raita.mocherla@pangaea.co.in	988592170
9	Armstong World Industries	Boards, Panels, False Ceiling & Plaster	Riddhi Desai	desai.riddhi@knaufarmstrong.com	887913442
10	Asahi India Glass	High Performance Glass	Garima Kamra	garima.kamra@aisglass.com	902211178
11	Ashok Chemicals	Cleaning Solutions	Anuj Shah	lustofab@gmail.com	996768889
12	Berger Becker Coatings (P)Limited	Paints & Coatings	Umesh Vishwakarma	Umesh.Vishwakarma@beckers-group.com	999916497
13	Berger Paints India Ltd.	Paints & Coatings	Sudipto Mukherjee	sudiptomukherjee@bergerindia.com	903809832
14	Berger Paints India Ltd ETICS Division	Insulation Products	Barun Sanki	barunsanki@bergerindla.com	760304101
15	Bio-Microbics Inc	Waste Water Treatment System	Shahaveer Jamshedji	shahaveer@biowater.in	937766656
16	Bonphul Air Products Private Limited	IAQ Solution	Narendra Bisht	narendra.bisht@bonphulapl.com	999988488
17	British Paints	Paints & Coatings	Ranjit Singh	rs@britishpaints.in	982239376
18	Dalmia Cement	Cement	R.Rajamohan	r.rajamohan@dalmiacement.com	984299406

24

Case Study : A residential building with a floor area of 1500 sq.ft and a reference study period of 50 years

Proc	duct st	age	Pro	cess age			U	se stag	ge			E	nd-of-l	ife stag	je	
A1	A2	A3	A4	A4	B 1	B2	B 3	B4	B 5	B6	B7	C1	C2	C3	C4	D
Raw material supply	Transport	Manufacturing	Transport	Construction	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction	Transport	Waste processing	Disposal	Datea-racuclinn-racivar

Scope of LCA

	BOM for 1500 sq. ft residential building	
S. No	Material	kg
1	Aluminium, primary, no finish	192
2	Clay brick	2798
3	Ceramic	145
4	Concrete (17.5 Mpa, in-situ and steel reinforecement, OPC)	5000
5	Glass	590
6	Gravel	2500
7	Paint (vivid white, 2 coats, Dulux, super tough low sheen)	165
8	Steel (color steel, MAX 0.4 mm)	2000

Bill of materials

BOM for 1500 sq. ft residential building

S. No	Material	kg	GWP (kg CO2eq / kg)	Emissions (kg CO2eq / kg)
1	Aluminium, primary,	192	10.8	2073.6
2	Clay brick	2798	0.26	727.48
3	Ceramic	145	0.53	76.85
4	Concrete (17.5 Mpa, in-situ and steel reinforecement, OPC)	50000	0.19	9500
5	Glass	590	1.18	696.2
6	Gravel	25000	0.1	2500
7	Paint (vivid white, 2 coats, Dulux, super tough low sheen)	165	0.5	82.5
8	Steel (color steel, MAX 0.4 mm)	2000	4.08	8160
	Total			23816.63

Embodied Energy

Usage phase emissions

600 months

150 units per month

0.82 kg CO2eq/kwh

Considerations (Usage phase)

- Building is deigned for 50 years
- Consumes 150 units per month (0.82 kg CO2eq / kwh)
- No renewable energy installed
- Have a capacity to offset 50 units per month through RE

Usage phase emissions = 150 units * 600 months * 0.82 kg CO2eq/kwh

= 73800 kg CO2eq

Total emissions

- Embodied energy emissions = 23816 kg CO2eq
- Usage emissions = 73800 kg CO2eq

Total Emissions: 97,616 kg CO2eq

Green Building Ratings : Energy points

Rating	Energy Points	Percentage of Overall points
LEED	19	17%
IGBC	15	15%
GRIHA	13	13 %

Energy Standards

- ASHRAE 90.1
- Energy Conservation Building Code
 - Building Envelope
 - HVAC
 - Lighting
 - Electrical Power
 - Service Water Heating

BEE Star Rating – EPI (kWh/sq.m./annum)
 AEDG 50% for Large Hospitals

Net Zero Energy Buildings

- Total energy used by a ZEB annually is equal to the renewable energy generated at site
- Optimise Energy consumption to extent possible through design & operations
- Remaining energy from Renewable source
- Can be connected to grid or independent

Mukesh Suthar +91-9867752131 msuthar@godrej.com

can we? Thank You.!!!